
Private Constrained Pseudorandom Functions with Succinct Keys

Pedro Capitão

Instituto Superior Técnico

July 2021

Abstract

A constrained pseudorandom function is a pseudorandom function (PRF) in which constrained keys can be

derived from the master secret key. Each constrained key is associated with a constraint f and allows its user to

evaluate the PRF at points x satisfying fpxq “ 0, but gives no information about the PRF values at points x such

that fpxq “ 1. In a private constrained PRF, constrained keys do not reveal their corresponding constraints.

We consider the problem of building a private constrained PRF in which the size of the constrained keys

is independent of the constraints. We show that this is possible to achieve under a generalized definition of

constrained PRF, in which the public parameters may be updated whenever a key is generated. We provide two

distinct constructions that fulfill these requirements, starting from a private constrained PRF and using as tools

the cryptographic primitives of attribute-based encryption and functional encodings, respectively. Their security

is based on the hardness of the learning with errors problem, which is related to the intractability of well-studied

problems on lattices.

1 Introduction

Lattice cryptography is the study of cryptographic protocols provably secure under the assumption of intractability

of certain computational problems on lattices. Such problems are conjectured to not be efficiently solvable by

classical or quantum algorithms, making these systems quantum-resistant. But security against quantum attacks is

not the only noteworthy quality of lattice cryptography. The problem of building fully-homomorphic encryption, a

powerful cryptographic primitive which allows computation over encrypted data, remained largely unanswered for

thirty years until the work of Gentry [Gen09], which used lattices to give the first candidate construction based on

cryptographic assumptions. Lattice cryptography has provided the first (and, in some cases, all) constructions of

this and other useful cryptographic primitives such as attribute-based encryption for arbitrary constraints [GVW13]

or indistiguishability obfuscation [GGH`13]. Moreover, lattice-based protocols are generally simple, efficient and

parallelizable. The cryptographic protocols studied in this work rely on the hardness of the learning with errors

(LWE) problem for their security. LWE was introduced by Regev [Reg05] and is a computational problem related

to lattices with wide application in cryptography.

In this work we study the cryptographic protocol known as private constrained pseudorandom function. A

pseudorandom function (PRF) [GGM86] is a keyed function such that, for a random key, its outputs are indis-

tinguishable from those of a truly random function. In a constrained pseudorandom function (CPRF) [BW13,
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KPTZ13, BGI14], the owner can delegate constrained keys which allow other parties to evaluate the PRF. How-

ever, each key is associated with a constraint (a predicate over the domain of the PRF) and only evaluates the PRF

correctly at points which satisfy that constraint.

A CPRF is said to be private (or constraint-hiding) [BLW17] if the constrained keys reveal no information

about the corresponding constraints. Constructions of private CPRFs for different classes of constraints have

been proposed, including for point-functions [BKM17], for constraints in NC1 [CC17], and for all polynomial-

size circuits [BLW17, BTVW17, PS18]. All of these are based on LWE, with the exception of [BLW17], which

requires the powerful cryptographic primitive of indistinguishability obfuscation [BGI`12] and is also the only

one that achieves collusion resistance.

A desirable property for CPRFs is that the constrained keys are short. Ideally, the size of such a key should

be (asymptotically) independent from the constraint that is associated to it – when this is the case we say that the

keys are succinct. An example of this is the LWE-based CPRF proposed by Brakerski and Vaikuntanathan [BV15],

which has succinct constrained keys. However, the problem appears to be harder when we move from standard

CPRFs to private CPRFs.

Our main contribution is a private CPRF with succinct keys for the constraint class of all polynomial-size

circuits (with bounded depth). We provide two different constructions matching this description, both of which

build upon a private CPRF [BTVW17] which supports the same constraint class, but in which the keys are not

succinct. The first relies on the internal structure of this private CPRF and on the use of attribute-based encryption

with short keys [BGG`14]. The second uses functional encodings [WW21] and a private CPRF as a black box.

We do not know of any previous private CPRF construction with succinct constrained keys.

There is a caveat to our results – in order to achieve the property of succinct keys, we resorted to a generalized

definition of constrained PRF. In this new notion, which we call CPRF with updatable parameters, the public

parameters of the scheme can be updated whenever a constrained key is generated (this is equivalent to generating

both a public and a private constrained key). We argue that little is lost by considering this definition, as it is a

simple and intuitive generalization and it can still be used in all applications of private CPRFs that we are aware

of.

In terms of security, both of our constructions satisfy essentially the same definition as the underlying private

CPRF, which is single-key selective security. This means that the scheme is resistant against an adversary that has

access to only one constrained key, chosen at the start of the security game. While this is a relatively weak notion,

there are indicators that achieving stronger security is substantially harder. For instance, it has been shown that

a 2-key secure private CPRF implies the existence of indistinguishability obfuscation [CC17] and that a certain

simulation-based definition of full (or adaptive) security is impossible to obtain [BKM17]. We define two general-

izations of single-key selective security for CPRFs with updatable parameters. Our first construction satisfies only

the weaker of the two definitions, while the second satisfies both.

2 Preliminaries

We begin by establishing some notation that will be used throughout the thesis. If χ is a probability distribution over

a setX , the expression xÐ χ denotes that x is a random variable with distribution χ, and, whenX is finite, xÐ X
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denotes that the distribution of x is the uniform distribution on X . If Alg is a probabilistic algorithm, y Ð Algpxq

indicates that y is a random variable distributed according to the output of Alg on input x. For a variable x

considered as the input or output of some algorithm, |x| denotes its size in bits. The expression polyp¨q denotes

any polynomial function; for instance, fpnq ď polypnq means that f is bounded by some polynomial. Likewise,

neglp¨q denotes a negligible function: a function f such that, for any positive polynomial p, fpnq ď 1
ppnq for

sufficiently large n. We use the standard asymptotic notation Op¨q and its variant Õp¨q which ignores logarithmic

factors in the indicated variable.

The expression log always denotes the logarithm in base 2. For a real number x, we denote by rxs the smallest

integer that is greater than or equal to x, and by txs “ rx´ 1
2 s the integer closest to x. For a natural number q, the

symbol Zq represents the ring of integers modulo q. We also define rns “ t1, 2, . . . , nu. If A1,A2 are matrices,

rA1 |A2s denotes their horizontal concatenation and
`

A1

A2

˘

their vertical concatenation.

2.1 Learning with errors

The learning with errors problem (LWE) was introduced by Regev [Reg05] and is the basis of many cryptographic

constructions, including the ones used in this work. Below we formulate the decision version of LWE.

Definition 2.1 (LWE). Let n,m, q be positive integers and χ a probability distribution over Z. The decisional

learning with errors problem LWEn,m,q,χ is to distinguish the distributions

pA,AT s` eq and pA,uq,

where AÐ Znˆmq , sÐ Znq , eÐ χm and uÐ Zmq .

2.2 Constrained pseudorandom functions

In a constrained pseudorandom function (CPRF), the owner of the master secret key can generate constrained keys

corresponding to constraints f : t0, 1uz Ñ t0, 1u. Such a key allows its holder to compute the value of the PRF on

points x P t0, 1uz such that fpxq “ 0, i.e. x satisfies f .1 Constrained PRFs were proposed independently by Boneh

and Waters [BW13], Kiayias, Papadopoulos, Triandopoulos, and Zacharias [KPTZ13], and Boyle, Goldwasser, and

Ivan [BGI14].

Following [BTVW17] and without loss of generality, we consider CPRFs with domain t0, 1uz , range Zp and

constraints represented by strings in t0, 1u`. All the CPRF constructions featured in this work are for the class of

all constraints computable by Boolean circuits of polynomial size and a priori bounded depth t.

Definition 2.2 (Constrained PRF). A constrained pseudorandom function is a tuple pKeyGen,Eval,

Constrain,ConstrainEvalq of polynomial-time algorithms with the following syntax:

• KeyGenp1λ, 1`, 1z, 1tq is a probabilistic algorithm that receives as input the security parameter λ, the max-

imum description length ` of constraint functions, their input length z and their maximum depth t. It outputs

a master secret key msk and public parameters pp.

1Since we are working with the CPRF of [BTVW17], we follow their convention of writing fpxq “ 0 when x satisfies f . Note that this is
contrary to the more common convention in which f is said to be satisfied if fpxq “ 1, but the two are equivalent.
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• Evalpppmsk, xq is a deterministic algorithm that receives as input a key msk and a string x P t0, 1uz , and

outputs a value y P Zp.

• Constrainpppmsk, fq is a probabilistic algorithm that receives as input a key msk and a circuit f : t0, 1uz Ñ

t0, 1u. It outputs a constrained key ck.

• ConstrainEvalpppck, xq is a deterministic algorithm that receives as input a string x P t0, 1uz and a con-

strained key ck. It outputs a value y P Zp.

Correctness. For any x P t0, 1uz and f P t0, 1u` such that fpxq “ 0,

Pr
“

Evalpppmsk, xq “ ConstrainEvalpppck, xq
‰

ě 1´ neglpλq,

where pmsk, ppq Ð KeyGenp1λq, ckÐ Constrainpppmsk, fq and the probability is taken over the randomness of

KeyGen and Constrain.

A constrained PRF is secure if it is pseudorandom at constrained points. This means that a key corresponding

to a constraint f gives no information about the PRF output at input points that do not satisfy f . A stronger

form of this protocol, named private constrained pseudorandom function, was introduced by Boneh, Lewi and

Wu [BLW17]. These have the additional security requirement of constraint hiding (or privacy), which states that

constrained keys should not reveal information about their corresponding constraints.

Succinct keys. We say that a constrained PRF has succinct keys if the size of each constrained key is asymptotically

independent of the size of the description of the constraint, depending only on the security parameter λ. More

specifically, the scheme has succinct keys if there exists a polynomial pp¨q such that, for any polynomial `p¨q, if ck

is a constrained key corresponding to f P t0, 1u`pλq, then |ck| ď ppλq for sufficiently large λ.

2.3 Updatable parameters

We define a generalized notion of constrained PRFs, in which the public parameters are updated whenever a

constrained key is generated.

Syntax. A constrained pseudorandom function with updatable parameters is a tuple of algorithms pKeyGen,Eval,

Constrain,ConstrainEvalq satisfying the conditions of Definition 2.2, with the following difference: the Constrain

algorithm outputs a pair ppp1, ckq consisting of new public parameters pp1 and a constrained key ck.

Correctness. Let f P t0, 1u` be a constraint, pmsk, ppq Ð KeyGenp1λq, and ppp1, ckq Ð Constrainpppmsk, fq.

Then Evalpp1pmsk, xq “ Evalpppmsk, xq for any x P t0, 1uz . Moreover, if fpxq “ 0 then

Pr
“

Evalpp1pmsk, xq “ ConstrainEvalpp1pck, xq
‰

ě 1´ neglpλq.

In the usual definition of a constrained PRF, the Constrain algorithm outputs only a constrained key. This

definition includes that notion as the particular case in which the public parameters are not updated, i.e. pp1 “ pp.

Note that in our constructions the updates are always incremental – if the parameters pp are replaced by pp1, then

pp1 contains all the information present in pp. Therefore this new notion could equivalently be defined as a CPRF
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in which the constrained key is split into two parts: a private part (which corresponds to the actual constrained key)

and a public part (the additional information added to the parameters).

When clear from the context, we will often omit the expression “with updatable parameters”. Note that both

of our proposed constructions, labelled SCPRF in Chapters 3 and 4, are private CPRFs with updatable parameters.

Regarding the size of constrained keys, the main advantage of this new definition is that it allows the Constrain

algorithm to generate additional information that does not need to be succinct (because it becomes part of the

parameters) while still having succinct keys. However, we need a new security definition that reflects the fact that

the updated parameters are assumed to be public – otherwise any CPRF could trivially be made into a succinct-key

CPRF with updatable parameters by placing the old constrained key in the updated parameters and letting the new

constrained key be empty.

We define two different notions of security for private constrained PRFs with updatable parameters, both of

which generalize the definition of single-key selective security for private constrained PRFs. In the first, which we

call weak security, the adversary has access to updated public parameters that are generated for uniformly chosen

constraints, unknown to the adversary. This corresponds to a real-world adversary waiting for the parameters to be

updated as keys are generated for other users.

Definition 2.3 (Weak security). A constrained pseudorandom function with updatable parameters pKeyGen,Eval,

Constrain,ConstrainEvalq is a weak single-key selective private constrained pseudorandom function if the follow-

ing conditions hold:

• Pseudorandomness at constrained points. Consider the following game between a challenger and a state-

ful PPT adversary A:

1. A sends 1`, 1t and f P t0, 1u` to the challenger.

2. The challenger generates pmsk, ppq Ð KeyGenp1λ, 1`, 1z, 1tq, ppp1, ckq Ð Constrainpppmsk, fq. It

flips a coin bÐ t0, 1u and sends ppp1, ckq to A.

3. In this phase A can send queries x P t0, 1uz such that fpxq “ 1 (with no value x queried more than

once), to which the challenger replies with y “ Evalpp1pmsk, xq, if b “ 0, or y Ð Zp, if b “ 1. A

may also request updated parameters, in which case the challenger samples g Ð t0, 1u`, computes

ppp1, ckgq Ð Constrainpp1pmsk, gq and sends the new parameters pp1 to A.

4. A outputs a guess b1 P t0, 1u.

Then
ˇ

ˇPrrb1 “ bs ´ 1
2

ˇ

ˇ “ neglpλq for any adversary A.

• Constraint hiding. Consider the following game between a challenger and a stateful PPT adversary A:

1. A sends 1`, 1t and f0, f1 P t0, 1u` to the challenger.

2. The challenger generates pmsk, ppq Ð KeyGenp1λ, 1`, 1z, 1tq. It flips a coin b Ð t0, 1u and sends

ppp1, ckq Ð Constrainpppmsk, f bq to A.

3. In this phase A can send queries x P t0, 1uz such that f0pxq “ f1pxq, to which the challenger replies

with y “ Evalpp1pmsk, xq. A may also request updated parameters, in which case the challenger
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samples g Ð t0, 1u`, computes ppp1, ckgq Ð Constrainpp1pmsk, gq and sends the new parameters pp1

to A.

4. A outputs a guess b1 P t0, 1u.

Then
ˇ

ˇPrrb1 “ bs ´ 1
2

ˇ

ˇ “ neglpλq for any adversary A.

Our proposed private constrained PRF in Chapter 4 satisfies a stronger form of security, which we define

next. In this definition, the adversary can choose the constraints for which the challenger must generate updated

parameters. This is a natural strengthening of the previous definition, as in many applications it may not be

justified to assume that the distribution of constraints for which the parameters are updated is uniform – it is likely

that some constraints are much more probable than others, or it may even be the case that a large portion of the

possible constraints is meaningless and has probability zero.

Definition 2.4 (Strong security). A constrained pseudorandom function with updatable parameters is a strong

single-key selective private constrained pseudorandom function if any adversary A has negligible advantage in the

games of Definition 2.3 when the constraints g for which the parameters are updated are chosen by A.

As the names indicate, strong single-key selective security implies weak single-key selective security. The

converse is not true – our first construction of a private constrained PRF, in Section 3, satisfies Definition 2.3 but

not Definition 2.4.

3 Succinct-key private constrained PRF from attribute-based encryption

The starting point for this construction is the private CPRF of Brakerski, Tsabary, Vaikuntanathan, and Wee

[BTVW17]2, in which the first component of a constrained key is of the form pΨ1, . . . ,Ψ`q and each Ψi only

depends on the i-th bit fi of the description of the constraint f . Relying on this fact, we encrypt with ABE each

Ψi for both the cases fi “ 0 and fi “ 1 and place those encryptions in the public parameters. Then we give as the

constrained key for our scheme an ABE constrained key that allows the user to decrypt only the relevant ciphertexts

in the parameters. A similar procedure applies to the second component of the key. This technique has been used

before by Brakerski and Vaikuntanathan [BV15] to turn their construction of a standard CPRF into a CPRF with

succinct keys. Additionally, we permutate the aforementioned ciphertexts using bits d1, . . . , d` in order to keep the

constraint hidden. The additional information contained in the updated parameters allows the user to decrypt the

correct ciphertexts, despite this permutation.

Consider the following two subroutines of the algorithm BTVW.Constrain, which we highlight in order to

make the presentation clearer.

• BTVW.GenPpppmsk, e0, β P t0, 1uq: Sample RÐ t0, 1upn`1q log qˆpn`1q log q . Output

Ψ “

¨

˝

B

sTB` eT0

˛

‚R` βG.

2In [BTVW17] two constructions of a private CPRF are proposed. Here we always refer to the first, which has the title “The dual-use
technique”.
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• BTVW.GenCpppmsk,A, β P t0, 1uq: Sample eÐ χpn`1q log q . Output

cT “ sTpA´ βGq ` eT,

where G denotes the gadget matrix G P Zpn`1qˆpn`1q log q
q with its last row removed.

In BTVW, a constrained key for a constraint f P t0, 1u` is of the form ck “ pΨ, tcjujPrLsq, where Ψi Ð

BTVW.GenPpppmsk, e0, fiq, the string pψ1, . . . , ψLq is the binary representation of Ψ “ rΨ1 | . . . |Ψ`s, and

cj Ð BTVW.GenCpppmsk,Bj , ψjq.

Let ABE “ pABE.Setup,ABE.Enc,ABE.Constrain,ABE.Decq be an attribute-based encryption scheme and

let BTVW “ pBTVW.KeyGen, BTVW.Eval, BTVW.Constrain, BTVW.ConstrainEvalq be the private constrained

pseudorandom function scheme of [BTVW17]. Our succinct-key private constrained PRF with updatable parame-

ters SCPRF consists of the following algorithms.

• SCPRF.KeyGenp1λ, 1`, 1z, 1tq: The input parameters are the security parameter λ, the maximum description

length ` of constraint functions, their input length z and their maximum depth t.

Let pBTVW.msk,BTVW.ppq Ð BTVW.KeyGenp1λ, 1`, 1z, 1tq. Sample e0 and B1, . . . ,BL as in the

BTVW CPRF and then generate

Ψi,β Ð BTVW.GenPBTVW.pppBTVW.msk, e0, βq,

cj,β Ð BTVW.GenCBTVW.pppBTVW.msk,Bj , βq

for all i P r`s, j P rLs and β P t0, 1u, where the parameter L is set as in BTVW.KeyGen.

Set up independently two ABE schemes as follows: pABE.msk1,ABE.pk1q Ð ABE.Setupp1λq and

pABE.msk2,ABE.pk2q Ð ABE.Setupp1λq. Then sample d1, . . . , d` Ð t0, 1u and compute

ai,β Ð ABE.EncpABE.pk1,pi, βq,Ψi,β‘diq,

bj,β Ð ABE.EncpABE.pk2,pj, βq, cj,βq

for all i P r`s, j P rLs, β P t0, 1u. Output

msk “
`

BTVW.msk, tdiuiPr`s,ABE.msk1,ABE.msk2
˘

,

pp “
`

BTVW.pp, tai,βuiPr`s,βPt0,1u, tbj,βujPrLs,βPt0,1u,ABE.pk1,ABE.pk2
˘

as the master secret key and the public parameters, respectively.

• SCPRF.Evalpppmsk, xq: Output y “ BTVW.EvalBTVW.pppBTVW.msk, xq.

• SCPRF.Constrainpppmsk, fq: Let pf1, . . . , f`q be the description of f and u “ pu1, . . . , u`q “ pf1 ‘

d1, . . . , f` ‘ d`q. Compute Ψi Ð ABE.DecpABE.msk1,ai,ui
q for all i P r`s. Let ψ1, . . . , ψL be the digits
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of the binary decomposition of Ψ “ rΨ1 | . . . |Ψ`s and define the predicates

Φupi, βq “

$

’

&

’

%

0, if β “ ui

1, otherwise,

ΛΨpj, βq “

$

’

&

’

%

0, if β “ ψj

1, otherwise.

Let ABE.ck1 Ð ABE.ConstrainpABE.msk1,Φuq and ABE.ck2 Ð ABE.ConstrainpABE.msk2,ΛΨq. Output

ck “ pABE.ck1,ABE.ck2q as the constrained key and pp1 “ ppp, uq as the new public parameters.

• SCPRF.ConstrainEvalpp1pck, xq: Retrieve u from the public parameters. For each i P r`s, compute Ψi “

ABE.DecpABE.ck1,Φu,ai,ui
q. Observe that the ABE constrained key for Φu allows the decryption of ai,ui

but not ai,1´ui . Let pψ1, . . . , ψLq be the binary decomposition of Ψ “ rΨ1| . . . |Ψ`s. Compute cj “

ABE.DecpABE.ck2,ΛΨ,bj,ψj q for all j P rLs.

Output y “ BTVW.ConstrainEvalBTVW.ppppΨ, tcjujPrLsq, xq.

Below we state the main result of this section, which shows that this construction satisfies our definition of

weak security. Moreover, its constrained keys are succinct. We consider SCPRF to be instantiated with the

attribute-based encryption scheme of Boneh et al. [BGG`14], which is selectively secure under the hardness of

LWE, in addition to the private constrained PRF BTVW, which has single-key selective security under the LWE

assumption.

Theorem 3.1. Consider the SCPRF construction from Section 3 with the attribute-based encryption scheme of

[BGG`14] in place of ABE. Under the LWE assumption, SCPRF is a weak single-key selective private CPRF

with updatable parameters in which the constrained keys are succinct.

4 Succinct-key private constrained PRF from functional encodings

Let CPRF “ pCPRF.KeyGen,CPRF.Eval,CPRF.Constrain,CPRF.ConstrainEvalq be a private constrained PRF.

We assume that the probabilistic algorithm CPRF.Constrainpppmsk, fq can be split into two procedures: a prob-

abilistic algorithm CPRF.Samplepppmskq, which generates all the randomness R necessary to generate a con-

strained key, independently of the constraint f , and a deterministic algorithm CPRF.Comppppmsk, f, Rq, which

computes a constrained key corresponding to f using the randomness R. We require that generating a key

with these algorithms is equivalent to generating it with the usual constraining algorithm, that is, the outputs

ck Ð CPRF.Comppppmsk, f,CPRF.Samplepppmskqq and ck Ð CPRF.Constrainpppmsk, fq are equally dis-

tributed.

Let FE “ pFE.Enc,FE.Open,FE.Decq be a functional encoding scheme and let SKE “ pSKE.Setup,

SKE.Enc,SKE.Decq be a symmetric-key encryption system. The following algorithms constitute our succinct-

key private constrained PRF with updatable parameters SCPRF, which supports the same class of constraints as

the underlying scheme CPRF.
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• SCPRF.KeyGenp1λ, 1`, 1z, 1tq: The input parameters are the security parameter λ, the maximum descrip-

tion length ` of constraint functions, their input length z and their maximum depth t. To set up the

scheme, generate pCPRF.msk,CPRF.ppq Ð CPRF.KeyGenp1λ, 1`, 1z, 1tq, k Ð SKE.Setupp1λq and R Ð

CPRF.SampleCPRF.pppCPRF.mskq. Then compute pC, rq Ð FE.Encp1λ, pCPRF.msk, k, Rqq. Output

msk “ pCPRF.msk, k, R, rq , pp “ pCPRF.pp,Cq

as the master secret key and the public parameters, respectively.

• SCPRF.Evalpppmsk, xq: Output y “ CPRF.EvalCPRF.pppCPRF.msk, xq.

• SCPRF.Constrainpppmsk, fq: Let h Ð SKE.Encpk, fq. Consider the following circuit Ch: on input a tuple

ps, k,Rq, it computes f “ SKE.Decpk, hq and then outputs CPRF.CompCPRF.ppps, f,Rq. Compute d Ð

FE.OpenpCh, pCPRF.msk, k, Rq, rq and output it as the constrained key for f . Output also pp1 “ ppp, hq as

the new public parameters.

Below we consider our private constrained PRF with updatable parameters SCPRF from this section to be

instantiated with the following schemes as building blocks:

– The private constrained PRF of Brakerski, Tsabary, Vaikuntanathan, and Wee [BTVW17] in place of

CPRF;

– The functional encoding scheme of Wee and Wichs [WW21] in place of FE;

– The Regev cryptosystem [Reg05] in place of SKE, with encryption and decryption performed bit by

bit.

Observe that the algorithm BTVW.Constrain (see [BTVW17]) can easily be split into a probabilistic part

BTVW.Sample and a deterministic part BTVW.Comp, as described next.

– BTVW.Samplepppmskq: Sample vectors e0, e1, . . . , e` Ð χpn`1q log q and matrices R1, . . . ,R` Ð

t0, 1upn`1q log qˆpn`1q log q . Output R “ pe0, e1, . . . , e`,R1, . . . ,R`q.

– BTVW.Comppppmsk, f, Rq: Compute

Ψi “

¨

˝

B

sTB` eT0

˛

‚Ri ` fiG

for all i P r`s and let pψ1, . . . , ψLq be the binary representation of Ψ “ rΨ1 | . . . |Ψ`s. Compute also

cTj “ sTpBj ´ ψjGq ` eTj for all j P rLs and output ck “ pΨ, tcjujPrLsq.

• SCPRF.ConstrainEvalpp1pd, xq: Retrieve h from the parameters and compute ck Ð FE.DecpCh,C,dq.

Output y “ CPRF.ConstrainEvalCPRF.pppck, xq.

Under the assumption of hardness of the LWE problem, the private constrained PRF BTVW has single-key

selective security, the functional encoding scheme FE is 1-SIM secure, and SKE is IND-CPA secure. With these

properties we can prove that our construction satisfies the definition of strong security and the property of succinct

keys, as stated below.
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Theorem 4.1. Consider the SCPRF construction from this section instantiated with the private CPRF of [BTVW17],

the FE scheme of [WW21] and the SKE scheme of [Reg05]. Under the LWE assumption, SCPRF is a strong

single-key selective private CPRF with updatable parameters in which the constrained keys are succinct.
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